Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
164 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Controlled Data Sharing for Collaborative Predictive Blacklisting (1502.05337v2)

Published 18 Feb 2015 in cs.CR and cs.NI

Abstract: Although sharing data across organizations is often advocated as a promising way to enhance cybersecurity, collaborative initiatives are rarely put into practice owing to confidentiality, trust, and liability challenges. In this paper, we investigate whether collaborative threat mitigation can be realized via a controlled data sharing approach, whereby organizations make informed decisions as to whether or not, and how much, to share. Using appropriate cryptographic tools, entities can estimate the benefits of collaboration and agree on what to share in a privacy-preserving way, without having to disclose their datasets. We focus on collaborative predictive blacklisting, i.e., forecasting attack sources based on one's logs and those contributed by other organizations. We study the impact of different sharing strategies by experimenting on a real-world dataset of two billion suspicious IP addresses collected from Dshield over two months. We find that controlled data sharing yields up to 105% accuracy improvement on average, while also reducing the false positive rate.

Citations (34)

Summary

We haven't generated a summary for this paper yet.