Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 29 tok/s Pro
2000 character limit reached

Inferring 3D Object Pose in RGB-D Images (1502.04652v1)

Published 16 Feb 2015 in cs.CV

Abstract: The goal of this work is to replace objects in an RGB-D scene with corresponding 3D models from a library. We approach this problem by first detecting and segmenting object instances in the scene using the approach from Gupta et al. [13]. We use a convolutional neural network (CNN) to predict the pose of the object. This CNN is trained using pixel normals in images containing rendered synthetic objects. When tested on real data, it outperforms alternative algorithms trained on real data. We then use this coarse pose estimate along with the inferred pixel support to align a small number of prototypical models to the data, and place the model that fits the best into the scene. We observe a 48% relative improvement in performance at the task of 3D detection over the current state-of-the-art [33], while being an order of magnitude faster at the same time.

Citations (33)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube