Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Clustering and Inference From Pairwise Comparisons (1502.04631v2)

Published 16 Feb 2015 in stat.ML

Abstract: Given a set of pairwise comparisons, the classical ranking problem computes a single ranking that best represents the preferences of all users. In this paper, we study the problem of inferring individual preferences, arising in the context of making personalized recommendations. In particular, we assume that there are $n$ users of $r$ types; users of the same type provide similar pairwise comparisons for $m$ items according to the Bradley-Terry model. We propose an efficient algorithm that accurately estimates the individual preferences for almost all users, if there are $r \max {m, n}\log m \log2 n$ pairwise comparisons per type, which is near optimal in sample complexity when $r$ only grows logarithmically with $m$ or $n$. Our algorithm has three steps: first, for each user, compute the \emph{net-win} vector which is a projection of its $\binom{m}{2}$-dimensional vector of pairwise comparisons onto an $m$-dimensional linear subspace; second, cluster the users based on the net-win vectors; third, estimate a single preference for each cluster separately. The net-win vectors are much less noisy than the high dimensional vectors of pairwise comparisons and clustering is more accurate after the projection as confirmed by numerical experiments. Moreover, we show that, when a cluster is only approximately correct, the maximum likelihood estimation for the Bradley-Terry model is still close to the true preference.

Citations (20)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.