Papers
Topics
Authors
Recent
2000 character limit reached

How essential are unstructured clinical narratives and information fusion to clinical trial recruitment? (1502.04049v1)

Published 13 Feb 2015 in cs.CY, cs.AI, and cs.CL

Abstract: Electronic health records capture patient information using structured controlled vocabularies and unstructured narrative text. While structured data typically encodes lab values, encounters and medication lists, unstructured data captures the physician's interpretation of the patient's condition, prognosis, and response to therapeutic intervention. In this paper, we demonstrate that information extraction from unstructured clinical narratives is essential to most clinical applications. We perform an empirical study to validate the argument and show that structured data alone is insufficient in resolving eligibility criteria for recruiting patients onto clinical trials for chronic lymphocytic leukemia (CLL) and prostate cancer. Unstructured data is essential to solving 59% of the CLL trial criteria and 77% of the prostate cancer trial criteria. More specifically, for resolving eligibility criteria with temporal constraints, we show the need for temporal reasoning and information integration with medical events within and across unstructured clinical narratives and structured data.

Citations (45)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.