Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

An equalised global graphical model-based approach for multi-camera object tracking (1502.03532v2)

Published 12 Feb 2015 in cs.CV

Abstract: Non-overlapping multi-camera visual object tracking typically consists of two steps: single camera object tracking and inter-camera object tracking. Most of tracking methods focus on single camera object tracking, which happens in the same scene, while for real surveillance scenes, inter-camera object tracking is needed and single camera tracking methods can not work effectively. In this paper, we try to improve the overall multi-camera object tracking performance by a global graph model with an improved similarity metric. Our method treats the similarities of single camera tracking and inter-camera tracking differently and obtains the optimization in a global graph model. The results show that our method can work better even in the condition of poor single camera object tracking.

Citations (30)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.