Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Sparse random graphs: regularization and concentration of the Laplacian (1502.03049v2)

Published 10 Feb 2015 in math.ST, cs.SI, math.PR, and stat.TH

Abstract: We study random graphs with possibly different edge probabilities in the challenging sparse regime of bounded expected degrees. Unlike in the dense case, neither the graph adjacency matrix nor its Laplacian concentrate around their expectations due to the highly irregular distribution of node degrees. It has been empirically observed that simply adding a constant of order $1/n$ to each entry of the adjacency matrix substantially improves the behavior of Laplacian. Here we prove that this regularization indeed forces Laplacian to concentrate even in sparse graphs. As an immediate consequence in network analysis, we establish the validity of one of the simplest and fastest approaches to community detection -- regularized spectral clustering, under the stochastic block model. Our proof of concentration of regularized Laplacian is based on Grothendieck's inequality and factorization, combined with paving arguments.

Citations (55)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.