Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal and Adaptive Algorithms for Online Boosting (1502.02651v1)

Published 9 Feb 2015 in cs.LG

Abstract: We study online boosting, the task of converting any weak online learner into a strong online learner. Based on a novel and natural definition of weak online learnability, we develop two online boosting algorithms. The first algorithm is an online version of boost-by-majority. By proving a matching lower bound, we show that this algorithm is essentially optimal in terms of the number of weak learners and the sample complexity needed to achieve a specified accuracy. This optimal algorithm is not adaptive however. Using tools from online loss minimization, we derive an adaptive online boosting algorithm that is also parameter-free, but not optimal. Both algorithms work with base learners that can handle example importance weights directly, as well as by rejection sampling examples with probability defined by the booster. Results are complemented with an extensive experimental study.

Citations (79)

Summary

We haven't generated a summary for this paper yet.