Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

A fast PC algorithm for high dimensional causal discovery with multi-core PCs (1502.02454v3)

Published 9 Feb 2015 in cs.AI

Abstract: Discovering causal relationships from observational data is a crucial problem and it has applications in many research areas. The PC algorithm is the state-of-the-art constraint based method for causal discovery. However, runtime of the PC algorithm, in the worst-case, is exponential to the number of nodes (variables), and thus it is inefficient when being applied to high dimensional data, e.g. gene expression datasets. On another note, the advancement of computer hardware in the last decade has resulted in the widespread availability of multi-core personal computers. There is a significant motivation for designing a parallelised PC algorithm that is suitable for personal computers and does not require end users' parallel computing knowledge beyond their competency in using the PC algorithm. In this paper, we develop parallel-PC, a fast and memory efficient PC algorithm using the parallel computing technique. We apply our method to a range of synthetic and real-world high dimensional datasets. Experimental results on a dataset from the DREAM 5 challenge show that the original PC algorithm could not produce any results after running more than 24 hours; meanwhile, our parallel-PC algorithm managed to finish within around 12 hours with a 4-core CPU computer, and less than 6 hours with a 8-core CPU computer. Furthermore, we integrate parallel-PC into a causal inference method for inferring miRNA-mRNA regulatory relationships. The experimental results show that parallel-PC helps improve both the efficiency and accuracy of the causal inference algorithm.

Citations (129)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com