Papers
Topics
Authors
Recent
2000 character limit reached

Towards a Learning Theory of Cause-Effect Inference (1502.02398v2)

Published 9 Feb 2015 in stat.ML, math.PR, math.ST, and stat.TH

Abstract: We pose causal inference as the problem of learning to classify probability distributions. In particular, we assume access to a collection ${(S_i,l_i)}_{i=1}n$, where each $S_i$ is a sample drawn from the probability distribution of $X_i \times Y_i$, and $l_i$ is a binary label indicating whether "$X_i \to Y_i$" or "$X_i \leftarrow Y_i$". Given these data, we build a causal inference rule in two steps. First, we featurize each $S_i$ using the kernel mean embedding associated with some characteristic kernel. Second, we train a binary classifier on such embeddings to distinguish between causal directions. We present generalization bounds showing the statistical consistency and learning rates of the proposed approach, and provide a simple implementation that achieves state-of-the-art cause-effect inference. Furthermore, we extend our ideas to infer causal relationships between more than two variables.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.