Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Restricted Isometry Property of Subspace Projection Matrix Under Random Compression (1502.02245v1)

Published 8 Feb 2015 in cs.IT and math.IT

Abstract: Structures play a significant role in the field of signal processing. As a representative of structural data, low rank matrix along with its restricted isometry property (RIP) has been an important research topic in compressive signal processing. Subspace projection matrix is a kind of low rank matrix with additional structure, which allows for further reduction of its intrinsic dimension. This leaves room for improving its own RIP, which could work as the foundation of compressed subspace projection matrix recovery. In this work, we study the RIP of subspace projection matrix under random orthonormal compression. Considering the fact that subspace projection matrices of $s$ dimensional subspaces in $\mathbb{R}N$ form an $s(N-s)$ dimensional submanifold in $\mathbb{R}{N\times N}$, our main concern is transformed to the stable embedding of such submanifold into $\mathbb{R}{N\times N}$. The result is that by $O(s(N-s)\log N)$ number of random measurements the RIP of subspace projection matrix is guaranteed.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)