Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A polynomial regularity lemma for semi-algebraic hypergraphs and its applications in geometry and property testing (1502.01730v3)

Published 5 Feb 2015 in math.CO and cs.CG

Abstract: Fox, Gromov, Lafforgue, Naor, and Pach proved a regularity lemma for semi-algebraic $k$-uniform hypergraphs of bounded complexity, showing that for each $\epsilon>0$ the vertex set can be equitably partitioned into a bounded number of parts (in terms of $\epsilon$ and the complexity) so that all but an $\epsilon$-fraction of the $k$-tuples of parts are homogeneous. We prove that the number of parts can be taken to be polynomial in $1/\epsilon$. Our improved regularity lemma can be applied to geometric problems and to the following general question on property testing: is it possible to decide, with query complexity polynomial in the reciprocal of the approximation parameter, whether a hypergraph has a given hereditary property? We give an affirmative answer for testing typical hereditary properties for semi-algebraic hypergraphs of bounded complexity.

Citations (45)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.