Papers
Topics
Authors
Recent
2000 character limit reached

Quantized Consensus by the ADMM: Probabilistic versus Deterministic Quantizers (1502.01053v6)

Published 3 Feb 2015 in cs.SY

Abstract: This paper develops efficient algorithms for distributed average consensus with quantized communication using the alternating direction method of multipliers (ADMM). We first study the effects of probabilistic and deterministic quantizations on a distributed ADMM algorithm. With probabilistic quantization, this algorithm yields linear convergence to the desired average in the mean sense with a bounded variance. When deterministic quantization is employed, the distributed ADMM either converges to a consensus or cycles with a finite period after a finite-time iteration. In the cyclic case, local quantized variables have the same mean over one period and hence each node can also reach a consensus. We then obtain an upper bound on the consensus error which depends only on the quantization resolution and the average degree of the network. Finally, we propose a two-stage algorithm which combines both probabilistic and deterministic quantizations. Simulations show that the two-stage algorithm, without picking small algorithm parameter, has consensus errors that are typically less than one quantization resolution for all connected networks where agents' data can be of arbitrary magnitudes.

Citations (42)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.