Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Freehand Sketch Recognition Using Deep Features (1502.00254v2)

Published 1 Feb 2015 in cs.CV

Abstract: Freehand sketches often contain sparse visual detail. In spite of the sparsity, they are easily and consistently recognized by humans across cultures, languages and age groups. Therefore, analyzing such sparse sketches can aid our understanding of the neuro-cognitive processes involved in visual representation and recognition. In the recent past, Convolutional Neural Networks (CNNs) have emerged as a powerful framework for feature representation and recognition for a variety of image domains. However, the domain of sketch images has not been explored. This paper introduces a freehand sketch recognition framework based on "deep" features extracted from CNNs. We use two popular CNNs for our experiments -- Imagenet CNN and a modified version of LeNet CNN. We evaluate our recognition framework on a publicly available benchmark database containing thousands of freehand sketches depicting everyday objects. Our results are an improvement over the existing state-of-the-art accuracies by 3% - 11%. The effectiveness and relative compactness of our deep features also make them an ideal candidate for related problems such as sketch-based image retrieval. In addition, we provide a preliminary glimpse of how such features can help identify crucial attributes (e.g. object-parts) of the sketched objects.

Citations (36)

Summary

We haven't generated a summary for this paper yet.