Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Subspace Leakage Analysis and Improved DOA Estimation with Small Sample Size (1502.00139v1)

Published 31 Jan 2015 in math.ST, cs.IT, math.IT, and stat.TH

Abstract: Classical methods of DOA estimation such as the MUSIC algorithm are based on estimating the signal and noise subspaces from the sample covariance matrix. For a small number of samples, such methods are exposed to performance breakdown, as the sample covariance matrix can largely deviate from the true covariance matrix. In this paper, the problem of DOA estimation performance breakdown is investigated. We consider the structure of the sample covariance matrix and the dynamics of the root-MUSIC algorithm. The performance breakdown in the threshold region is associated with the subspace leakage where some portion of the true signal subspace resides in the estimated noise subspace. In this paper, the subspace leakage is theoretically derived. We also propose a two-step method which improves the performance by modifying the sample covariance matrix such that the amount of the subspace leakage is reduced. Furthermore, we introduce a phenomenon named as root-swap which occurs in the root-MUSIC algorithm in the low sample size region and degrades the performance of the DOA estimation. A new method is then proposed to alleviate this problem. Numerical examples and simulation results are given for uncorrelated and correlated sources to illustrate the improvement achieved by the proposed methods. Moreover, the proposed algorithms are combined with the pseudo-noise resampling method to further improve the performance.

Citations (75)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.