Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 136 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Combining k-Induction with Continuously-Refined Invariants (1502.00096v1)

Published 31 Jan 2015 in cs.SE and cs.PL

Abstract: Bounded model checking (BMC) is a well-known and successful technique for finding bugs in software. k-induction is an approach to extend BMC-based approaches from falsification to verification. Automatically generated auxiliary invariants can be used to strengthen the induction hypothesis. We improve this approach and further increase effectiveness and efficiency in the following way: we start with light-weight invariants and refine these invariants continuously during the analysis. We present and evaluate an implementation of our approach in the open-source verification-framework CPAchecker. Our experiments show that combining k-induction with continuously-refined invariants significantly increases effectiveness and efficiency, and outperforms all existing implementations of k-induction-based software verification in terms of successful verification results.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.