Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Twitter Hash Tag Recommendation (1502.00094v1)

Published 31 Jan 2015 in cs.IR and cs.LG

Abstract: The rise in popularity of microblogging services like Twitter has led to increased use of content annotation strategies like the hashtag. Hashtags provide users with a tagging mechanism to help organize, group, and create visibility for their posts. This is a simple idea but can be challenging for the user in practice which leads to infrequent usage. In this paper, we will investigate various methods of recommending hashtags as new posts are created to encourage more widespread adoption and usage. Hashtag recommendation comes with numerous challenges including processing huge volumes of streaming data and content which is small and noisy. We will investigate preprocessing methods to reduce noise in the data and determine an effective method of hashtag recommendation based on the popular classification algorithms.

Citations (17)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.