Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Locality-aware parallel block-sparse matrix-matrix multiplication using the Chunks and Tasks programming model (1501.07800v4)

Published 30 Jan 2015 in cs.DC

Abstract: We present a method for parallel block-sparse matrix-matrix multiplication on distributed memory clusters. By using a quadtree matrix representation, data locality is exploited without prior information about the matrix sparsity pattern. A distributed quadtree matrix representation is straightforward to implement due to our recent development of the Chunks and Tasks programming model [Parallel Comput. 40, 328 (2014)]. The quadtree representation combined with the Chunks and Tasks model leads to favorable weak and strong scaling of the communication cost with the number of processes, as shown both theoretically and in numerical experiments. Matrices are represented by sparse quadtrees of chunk objects. The leaves in the hierarchy are block-sparse submatrices. Sparsity is dynamically detected by the matrix library and may occur at any level in the hierarchy and/or within the submatrix leaves. In case graphics processing units (GPUs) are available, both CPUs and GPUs are used for leaf-level multiplication work, thus making use of the full computing capacity of each node. The performance is evaluated for matrices with different sparsity structures, including examples from electronic structure calculations. Compared to methods that do not exploit data locality, our locality-aware approach reduces communication significantly, achieving essentially constant communication per node in weak scaling tests.

Citations (23)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube