Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

FMAP: Distributed Cooperative Multi-Agent Planning (1501.07250v1)

Published 28 Jan 2015 in cs.AI

Abstract: This paper proposes FMAP (Forward Multi-Agent Planning), a fully-distributed multi-agent planning method that integrates planning and coordination. Although FMAP is specifically aimed at solving problems that require cooperation among agents, the flexibility of the domain-independent planning model allows FMAP to tackle multi-agent planning tasks of any type. In FMAP, agents jointly explore the plan space by building up refinement plans through a complete and flexible forward-chaining partial-order planner. The search is guided by $h_{DTG}$, a novel heuristic function that is based on the concepts of Domain Transition Graph and frontier state and is optimized to evaluate plans in distributed environments. Agents in FMAP apply an advanced privacy model that allows them to adequately keep private information while communicating only the data of the refinement plans that is relevant to each of the participating agents. Experimental results show that FMAP is a general-purpose approach that efficiently solves tightly-coupled domains that have specialized agents and cooperative goals as well as loosely-coupled problems. Specifically, the empirical evaluation shows that FMAP outperforms current MAP systems at solving complex planning tasks that are adapted from the International Planning Competition benchmarks.

Citations (98)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.