Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Compressed Support Vector Machines (1501.06478v2)

Published 26 Jan 2015 in cs.LG

Abstract: Support vector machines (SVM) can classify data sets along highly non-linear decision boundaries because of the kernel-trick. This expressiveness comes at a price: During test-time, the SVM classifier needs to compute the kernel inner-product between a test sample and all support vectors. With large training data sets, the time required for this computation can be substantial. In this paper, we introduce a post-processing algorithm, which compresses the learned SVM model by reducing and optimizing support vectors. We evaluate our algorithm on several medium-scaled real-world data sets, demonstrating that it maintains high test accuracy while reducing the test-time evaluation cost by several orders of magnitude---in some cases from hours to seconds. It is fair to say that most of the work in this paper was previously been invented by Burges and Sch\"olkopf almost 20 years ago. For most of the time during which we conducted this research, we were unaware of this prior work. However, in the past two decades, computing power has increased drastically, and we can therefore provide empirical insights that were not possible in their original paper.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.