Local convergence of random graph colorings (1501.06301v1)
Abstract: Let $G=G(n,m)$ be a random graph whose average degree $d=2m/n$ is below the $k$-colorability threshold. If we sample a $k$-coloring $\sigma$ of $G$ uniformly at random, what can we say about the correlations between the colors assigned to vertices that are far apart? According to a prediction from statistical physics, for average degrees below the so-called {\em condensation threshold} $d_c(k)$, the colors assigned to far away vertices are asymptotically independent [Krzakala et al.: Proc. National Academy of Sciences 2007]. We prove this conjecture for $k$ exceeding a certain constant $k_0$. More generally, we investigate the joint distribution of the $k$-colorings that $\sigma$ induces locally on the bounded-depth neighborhoods of any fixed number of vertices. In addition, we point out an implication on the reconstruction problem.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.