Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Improved Feature Descriptor for Recognition of Handwritten Bangla Alphabet (1501.05497v1)

Published 22 Jan 2015 in cs.CV

Abstract: Appropriate feature set for representation of pattern classes is one of the most important aspects of handwritten character recognition. The effectiveness of features depends on the discriminating power of the features chosen to represent patterns of different classes. However, discriminatory features are not easily measurable. Investigative experimentation is necessary for identifying discriminatory features. In the present work we have identified a new variation of feature set which significantly outperforms on handwritten Bangla alphabet from the previously used feature set. 132 number of features in all viz. modified shadow features, octant and centroid features, distance based features, quad tree based longest run features are used here. Using this feature set the recognition performance increases sharply from the 75.05% observed in our previous work [7], to 85.40% on 50 character classes with MLP based classifier on the same dataset.

Citations (45)

Summary

We haven't generated a summary for this paper yet.