Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Walk-powers and homomorphism bound of planar graphs (1501.05089v1)

Published 21 Jan 2015 in math.CO and cs.DM

Abstract: As an extension of the Four-Color Theorem it is conjectured that every planar graph of odd-girth at least $2k+1$ admits a homomorphism to $PC_{2k}=(\mathbb{Z}2{2k}, {e_1, e_2, ...,e{2k}, J})$ where $e_i$'s are standard basis and $J$ is all 1 vector. Noting that $PC_{2k}$ itself is of odd-girth $2k+1$, in this work we show that if the conjecture is true, then $PC_{2k}$ is an optimal such a graph both with respect to number of vertices and number of edges. The result is obtained using the notion of walk-power of graphs and their clique numbers. An analogous result is proved for bipartite signed planar graphs of unbalanced-girth $2k$. The work is presented on a uniform frame work of planar consistent signed graphs.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.