Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

An Algorithmic Pipeline for Analyzing Multi-parametric Flow Cytometry Data (1501.03461v1)

Published 14 Jan 2015 in q-bio.QM, cs.CE, and cs.DS

Abstract: Flow cytometry (FC) is a single-cell profiling platform for measuring the phenotypes of individual cells from millions of cells in biological samples. FC employs high-throughput technologies and generates high-dimensional data, and hence algorithms for analyzing the data represent a bottleneck. This dissertation addresses several computational challenges arising in modern cytometry while mining information from high-dimensional and high-content biological data. A collection of combinatorial and statistical algorithms for locating, matching, prototyping, and classifying cellular populations from multi-parametric FC data is developed. The algorithmic pipeline, flowMatch, developed in this dissertation consists of five well-defined algorithmic modules to (1) transform data to stabilize within-population variance, (2) identify cell populations by robust clustering algorithms, (3) register cell populations across samples, (4) encapsulate a class of samples with templates, and (5) classify samples based on their similarity with the templates. Components of flowMatch can work independently or collaborate with each other to perform the complete data analysis. flowMatch is made available as an open-source R package in Bioconductor. We have employed flowMatch for classifying leukemia samples, evaluating the phosphorylation effects on T cells, classifying healthy immune profiles, and classifying the vaccination status of HIV patients. In these analyses, the pipeline is able to reach biologically meaningful conclusions quickly and efficiently with the automated algorithms. The algorithms included in flowMatch can also be applied to problems outside of flow cytometry such as in microarray data analysis and image recognition. Therefore, this dissertation contributes to the solution of fundamental problems in computational cytometry and related domains.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)