Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Identifiability and optimal rates of convergence for parameters of multiple types in finite mixtures (1501.02497v1)

Published 11 Jan 2015 in math.ST, stat.ML, and stat.TH

Abstract: This paper studies identifiability and convergence behaviors for parameters of multiple types in finite mixtures, and the effects of model fitting with extra mixing components. First, we present a general theory for strong identifiability, which extends from the previous work of Nguyen [2013] and Chen [1995] to address a broad range of mixture models and to handle matrix-variate parameters. These models are shown to share the same Wasserstein distance based optimal rates of convergence for the space of mixing distributions --- $n{-1/2}$ under $W_1$ for the exact-fitted and $n{-1/4}$ under $W_2$ for the over-fitted setting, where $n$ is the sample size. This theory, however, is not applicable to several important model classes, including location-scale multivariate Gaussian mixtures, shape-scale Gamma mixtures and location-scale-shape skew-normal mixtures. The second part of this work is devoted to demonstrating that for these "weakly identifiable" classes, algebraic structures of the density family play a fundamental role in determining convergence rates of the model parameters, which display a very rich spectrum of behaviors. For instance, the optimal rate of parameter estimation in an over-fitted location-covariance Gaussian mixture is precisely determined by the order of a solvable system of polynomial equations --- these rates deteriorate rapidly as more extra components are added to the model. The established rates for a variety of settings are illustrated by a simulation study.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)