Reviving the Two-state Markov Chain Approach (Technical Report) (1501.01779v4)
Abstract: Probabilistic Boolean networks (PBNs) is a well-established computational framework for modelling biological systems. The steady-state dynamics of PBNs is of crucial importance in the study of such systems. However, for large PBNs, which often arise in systems biology, obtaining the steady-state distribution poses a significant challenge. In fact, statistical methods for steady-state approximation are the only viable means when dealing with large networks. In this paper, we revive the two-state Markov chain approach presented in the literature. We first identify a problem of generating biased results, due to the size of the initial sample with which the approach needs to start and we propose a few heuristics to avoid such a pitfall. Second, we conduct an extensive experimental comparison of the two-state Markov chain approach and another approach based on the Skart method and we show that statistically the two-state Markov chain has a better performance. Finally, we apply this approach to a large PBN model of apoptosis in hepatocytes.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.