Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 124 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Consensus Labeled Random Finite Set Filtering for Distributed Multi-Object Tracking (1501.01579v2)

Published 7 Jan 2015 in cs.SY and stat.CO

Abstract: This paper addresses distributed multi-object tracking over a network of heterogeneous and geographically dispersed nodes with sensing, communication and processing capabilities. The main contribution is an approach to distributed multi-object estimation based on labeled Random Finite Sets (RFSs) and dynamic Bayesian inference, which enables the development of two novel consensus tracking filters, namely a Consensus Marginalized $\delta$-Generalized Labeled Multi-Bernoulli and Consensus Labeled Multi-Bernoulli tracking filter. The proposed algorithms provide fully distributed, scalable and computationally efficient solutions for multi-object tracking. Simulation experiments via Gaussian mixture implementations confirm the effectiveness of the proposed approach on challenging scenarios.

Citations (58)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.