Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Detecting Malicious Content on Facebook (1501.00802v1)

Published 5 Jan 2015 in cs.SI and cs.CY

Abstract: Online Social Networks (OSNs) witness a rise in user activity whenever an event takes place. Malicious entities exploit this spur in user-engagement levels to spread malicious content that compromises system reputation and degrades user experience. It also generates revenue from advertisements, clicks, etc. for the malicious entities. Facebook, the world's biggest social network, is no exception and has recently been reported to face much abuse through scams and other type of malicious content, especially during news making events. Recent studies have reported that spammers earn $200 million just by posting malicious links on Facebook. In this paper, we characterize malicious content posted on Facebook during 17 events, and discover that existing efforts to counter malicious content by Facebook are not able to stop all malicious content from entering the social graph. Our findings revealed that malicious entities tend to post content through web and third party applications while legitimate entities prefer mobile platforms to post content. In addition, we discovered a substantial amount of malicious content generated by Facebook pages. Through our observations, we propose an extensive feature set based on entity profile, textual content, metadata, and URL features to identify malicious content on Facebook in real time and at zero-hour. This feature set was used to train multiple machine learning models and achieved an accuracy of 86.9%. The intent is to catch malicious content that is currently evading Facebook's detection techniques. Our machine learning model was able to detect more than double the number of malicious posts as compared to existing malicious content detection techniques. Finally, we built a real world solution in the form of a REST based API and a browser plug-in to identify malicious Facebook posts in real time.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.