Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Comprehend DeepWalk as Matrix Factorization (1501.00358v1)

Published 2 Jan 2015 in cs.LG

Abstract: Word2vec, as an efficient tool for learning vector representation of words has shown its effectiveness in many natural language processing tasks. Mikolov et al. issued Skip-Gram and Negative Sampling model for developing this toolbox. Perozzi et al. introduced the Skip-Gram model into the study of social network for the first time, and designed an algorithm named DeepWalk for learning node embedding on a graph. We prove that the DeepWalk algorithm is actually factoring a matrix M where each entry M_{ij} is logarithm of the average probability that node i randomly walks to node j in fix steps.

Citations (32)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)