Papers
Topics
Authors
Recent
2000 character limit reached

Comprehend DeepWalk as Matrix Factorization (1501.00358v1)

Published 2 Jan 2015 in cs.LG

Abstract: Word2vec, as an efficient tool for learning vector representation of words has shown its effectiveness in many natural language processing tasks. Mikolov et al. issued Skip-Gram and Negative Sampling model for developing this toolbox. Perozzi et al. introduced the Skip-Gram model into the study of social network for the first time, and designed an algorithm named DeepWalk for learning node embedding on a graph. We prove that the DeepWalk algorithm is actually factoring a matrix M where each entry M_{ij} is logarithm of the average probability that node i randomly walks to node j in fix steps.

Citations (32)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.