Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Polynomial Time Algorithm to Compute an Approximate Weighted Shortest Path (1501.00340v3)

Published 2 Jan 2015 in cs.CG

Abstract: We devise a polynomial-time approximation scheme for the classical geometric problem of finding an approximate short path amid weighted regions. In this problem, a triangulated region P comprising of n vertices, a positive weight associated with each triangle, and two points s and t that belong to P are given as the input. The objective is to find a path whose cost is at most (1+epsilon)OPT where OPT is the cost of an optimal path between s and t. Our algorithm initiates a discretized-Dijkstra wavefront from source s and progresses the wavefront till it strikes t. This result is about a cubic factor (in n) improvement over the Mitchell and Papadimitriou '91 result, which is the only known polynomial time algorithm for this problem to date. Further, with polynomial time preprocessing of P, a set of data structures are computed which allow answering approximate weighted shortest path queries in polynomial time.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.