Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 166 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Learning Parameters for Weighted Matrix Completion via Empirical Estimation (1501.00192v4)

Published 31 Dec 2014 in stat.ML

Abstract: Recently theoretical guarantees have been obtained for matrix completion in the non-uniform sampling regime. In particular, if the sampling distribution aligns with the underlying matrix's leverage scores, then with high probability nuclear norm minimization will exactly recover the low rank matrix. In this article, we analyze the scenario in which the non-uniform sampling distribution may or may not not align with the underlying matrix's leverage scores. Here we explore learning the parameters for weighted nuclear norm minimization in terms of the empirical sampling distribution. We provide a sufficiency condition for these learned weights which provide an exact recovery guarantee for weighted nuclear norm minimization. It has been established that a specific choice of weights in terms of the true sampling distribution not only allows for weighted nuclear norm minimization to exactly recover the low rank matrix, but also allows for a quantifiable relaxation in the exact recovery conditions. In this article we extend this quantifiable relaxation in exact recovery conditions for a specific choice of weights defined analogously in terms of the empirical distribution as opposed to the true sampling distribution. To accomplish this we employ a concentration of measure bound and a large deviation bound. We also present numerical evidence for the healthy robustness of the weighted nuclear norm minimization algorithm to the choice of empirically learned weights. These numerical experiments show that for a variety of easily computable empirical weights, weighted nuclear norm minimization outperforms unweighted nuclear norm minimization in the non-uniform sampling regime.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.