Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Face recognition using color local binary pattern from mutually independent color channels (1501.00105v1)

Published 31 Dec 2014 in cs.CV

Abstract: In this paper, a high performance face recognition system based on local binary pattern (LBP) using the probability distribution functions (PDF) of pixels in different mutually independent color channels which are robust to frontal homogenous illumination and planer rotation is proposed. The illumination of faces is enhanced by using the state-of-the-art technique which is using discrete wavelet transform (DWT) and singular value decomposition (SVD). After equalization, face images are segmented by use of local Successive Mean Quantization Transform (SMQT) followed by skin color based face detection system. Kullback-Leibler Distance (KLD) between the concatenated PDFs of a given face obtained by LBP and the concatenated PDFs of each face in the database is used as a metric in the recognition process. Various decision fusion techniques have been used in order to improve the recognition rate. The proposed system has been tested on the FERET, HP, and Bosphorus face databases. The proposed system is compared with conventional and thestate-of-the-art techniques. The recognition rates obtained using FVF approach for FERET database is 99.78% compared with 79.60% and 68.80% for conventional gray scale LBP and Principle Component Analysis (PCA) based face recognition techniques respectively.

Citations (57)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.