Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Learning from Labeled Features for Document Filtering (1412.8125v1)

Published 28 Dec 2014 in cs.IR

Abstract: Existing document filtering systems learn user profiles based on user relevance feedback on documents. In some cases, users may have prior knowledge about what features are important. For example, a Spanish speaker may only want news written in Spanish, and thus a relevant document should contain the feature "Language: Spanish"; a researcher focusing on HIV knows an article with the medical subject "Subject: AIDS" is very likely to be relevant to him/her. Semi-structured documents with rich metadata are increasingly prevalent on the Internet. Motivated by the well-adopted faceted search interface in e-commerce, we study the exploitation of user prior knowledge on faceted features for semi-structured document filtering. We envision two faceted feedback mechanisms, and propose a novel user profile learning algorithm that can incorporate user feedback on features. To evaluate the proposed work, we use two data sets from the TREC filtering track, and conduct a user study on Amazon Mechanical Turk. Our experiment results show that user feedback on faceted features is useful for filtering. The proposed user profile learning algorithm can effectively learn from user feedback on both documents and features, and performs better than several existing methods.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.