Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Solving the Shortest Vector Problem in $2^n$ Time via Discrete Gaussian Sampling (1412.7994v5)

Published 26 Dec 2014 in cs.DS

Abstract: We give a randomized $2{n+o(n)}$-time and space algorithm for solving the Shortest Vector Problem (SVP) on n-dimensional Euclidean lattices. This improves on the previous fastest algorithm: the deterministic $\widetilde{O}(4n)$-time and $\widetilde{O}(2n)$-space algorithm of Micciancio and Voulgaris (STOC 2010, SIAM J. Comp. 2013). In fact, we give a conceptually simple algorithm that solves the (in our opinion, even more interesting) problem of discrete Gaussian sampling (DGS). More specifically, we show how to sample $2{n/2}$ vectors from the discrete Gaussian distribution at any parameter in $2{n+o(n)}$ time and space. (Prior work only solved DGS for very large parameters.) Our SVP result then follows from a natural reduction from SVP to DGS. We also show that our DGS algorithm implies a $2{n + o(n)}$-time algorithm that approximates the Closest Vector Problem to within a factor of $1.97$. In addition, we give a more refined algorithm for DGS above the so-called smoothing parameter of the lattice, which can generate $2{n/2}$ discrete Gaussian samples in just $2{n/2+o(n)}$ time and space. Among other things, this implies a $2{n/2+o(n)}$-time and space algorithm for $1.93$-approximate decision SVP.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com