Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adjusting Leverage Scores by Row Weighting: A Practical Approach to Coherent Matrix Completion (1412.7938v2)

Published 26 Dec 2014 in cs.LG and stat.ML

Abstract: Low-rank matrix completion is an important problem with extensive real-world applications. When observations are uniformly sampled from the underlying matrix entries, existing methods all require the matrix to be incoherent. This paper provides the first working method for coherent matrix completion under the standard uniform sampling model. Our approach is based on the weighted nuclear norm minimization idea proposed in several recent work, and our key contribution is a practical method to compute the weighting matrices so that the leverage scores become more uniform after weighting. Under suitable conditions, we are able to derive theoretical results, showing the effectiveness of our approach. Experiments on synthetic data show that our approach recovers highly coherent matrices with high precision, whereas the standard unweighted method fails even on noise-free data.

Citations (3)

Summary

We haven't generated a summary for this paper yet.