Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Hete-CF: Social-Based Collaborative Filtering Recommendation using Heterogeneous Relations (1412.7610v1)

Published 24 Dec 2014 in cs.IR

Abstract: Collaborative filtering algorithms haven been widely used in recommender systems. However, they often suffer from the data sparsity and cold start problems. With the increasing popularity of social media, these problems may be solved by using social-based recommendation. Social-based recommendation, as an emerging research area, uses social information to help mitigate the data sparsity and cold start problems, and it has been demonstrated that the social-based recommendation algorithms can efficiently improve the recommendation performance. However, few of the existing algorithms have considered using multiple types of relations within one social network. In this paper, we investigate the social-based recommendation algorithms on heterogeneous social networks and proposed Hete-CF, a Social Collaborative Filtering algorithm using heterogeneous relations. Distinct from the exiting methods, Hete-CF can effectively utilize multiple types of relations in a heterogeneous social network. In addition, Hete-CF is a general approach and can be used in arbitrary social networks, including event based social networks, location based social networks, and any other types of heterogeneous information networks associated with social information. The experimental results on two real-world data sets, DBLP (a typical heterogeneous information network) and Meetup (a typical event based social network) show the effectiveness and efficiency of our algorithm.

Citations (121)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)