Incidence coloring of graphs with high maximum average degree (1412.6803v2)
Abstract: An incidence of an undirected graph G is a pair $(v,e)$ where $v$ is a vertex of $G$ and $e$ an edge of $G$ incident with $v$. Two incidences $(v,e)$ and $(w,f)$ are adjacent if one of the following holds: (i) $v = w$, (ii) $e = f$ or (iii) $vw = e$ or $f$. An incidence coloring of $G$ assigns a color to each incidence of $G$ in such a way that adjacent incidences get distinct colors. In 2005, Hosseini Dolama \emph{et al.}~\citep{ds05} proved that every graph with maximum average degree strictly less than $3$ can be incidence colored with $\Delta+3$ colors. Recently, Bonamy \emph{et al.}~\citep{Bonamy} proved that every graph with maximum degree at least $4$ and with maximum average degree strictly less than $\frac{7}{3}$ admits an incidence $(\Delta+1)$-coloring. In this paper we give bounds for the number of colors needed to color graphs having maximum average degrees bounded by different values between $4$ and $6$. In particular we prove that every graph with maximum degree at least $7$ and with maximum average degree less than $4$ admits an incidence $(\Delta+3)$-coloring. This result implies that every triangle-free planar graph with maximum degree at least $7$ is incidence $(\Delta+3)$-colorable. We also prove that every graph with maximum average degree less than 6 admits an incidence $(\Delta + 7)$-coloring. More generally, we prove that $\Delta+k-1$ colors are enough when the maximum average degree is less than $k$ and the maximum degree is sufficiently large.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.