Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Random Walk Initialization for Training Very Deep Feedforward Networks (1412.6558v3)

Published 19 Dec 2014 in cs.NE, cs.LG, and stat.ML

Abstract: Training very deep networks is an important open problem in machine learning. One of many difficulties is that the norm of the back-propagated error gradient can grow or decay exponentially. Here we show that training very deep feed-forward networks (FFNs) is not as difficult as previously thought. Unlike when back-propagation is applied to a recurrent network, application to an FFN amounts to multiplying the error gradient by a different random matrix at each layer. We show that the successive application of correctly scaled random matrices to an initial vector results in a random walk of the log of the norm of the resulting vectors, and we compute the scaling that makes this walk unbiased. The variance of the random walk grows only linearly with network depth and is inversely proportional to the size of each layer. Practically, this implies a gradient whose log-norm scales with the square root of the network depth and shows that the vanishing gradient problem can be mitigated by increasing the width of the layers. Mathematical analyses and experimental results using stochastic gradient descent to optimize tasks related to the MNIST and TIMIT datasets are provided to support these claims. Equations for the optimal matrix scaling are provided for the linear and ReLU cases.

Citations (79)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube