Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Query Complexity of Approximate Equilibria in Anonymous Games (1412.6455v3)

Published 19 Dec 2014 in cs.GT

Abstract: We study the computation of equilibria of anonymous games, via algorithms that may proceed via a sequence of adaptive queries to the game's payoff function, assumed to be unknown initially. The general topic we consider is \emph{query complexity}, that is, how many queries are necessary or sufficient to compute an exact or approximate Nash equilibrium. We show that exact equilibria cannot be found via query-efficient algorithms. We also give an example of a 2-strategy, 3-player anonymous game that does not have any exact Nash equilibrium in rational numbers. However, more positive query-complexity bounds are attainable if either further symmetries of the utility functions are assumed or we focus on approximate equilibria. We investigate four sub-classes of anonymous games previously considered by \cite{bfh09, dp14}. Our main result is a new randomized query-efficient algorithm that finds a $O(n{-1/4})$-approximate Nash equilibrium querying $\tilde{O}(n{3/2})$ payoffs and runs in time $\tilde{O}(n{3/2})$. This improves on the running time of pre-existing algorithms for approximate equilibria of anonymous games, and is the first one to obtain an inverse polynomial approximation in poly-time. We also show how this can be utilized as an efficient polynomial-time approximation scheme (PTAS). Furthermore, we prove that $\Omega(n \log{n})$ payoffs must be queried in order to find any $\epsilon$-well-supported Nash equilibrium, even by randomized algorithms.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.