Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Semi-Stochastic Coordinate Descent (1412.6293v1)

Published 19 Dec 2014 in cs.NA and math.OC

Abstract: We propose a novel stochastic gradient method---semi-stochastic coordinate descent (S2CD)---for the problem of minimizing a strongly convex function represented as the average of a large number of smooth convex functions: $f(x)=\tfrac{1}{n}\sum_i f_i(x)$. Our method first performs a deterministic step (computation of the gradient of $f$ at the starting point), followed by a large number of stochastic steps. The process is repeated a few times, with the last stochastic iterate becoming the new starting point where the deterministic step is taken. The novelty of our method is in how the stochastic steps are performed. In each such step, we pick a random function $f_i$ and a random coordinate $j$---both using nonuniform distributions---and update a single coordinate of the decision vector only, based on the computation of the $j{th}$ partial derivative of $f_i$ at two different points. Each random step of the method constitutes an unbiased estimate of the gradient of $f$ and moreover, the squared norm of the steps goes to zero in expectation, meaning that the stochastic estimate of the gradient progressively improves. The complexity of the method is the sum of two terms: $O(n\log(1/\epsilon))$ evaluations of gradients $\nabla f_i$ and $O(\hat{\kappa}\log(1/\epsilon))$ evaluations of partial derivatives $\nabla_j f_i$, where $\hat{\kappa}$ is a novel condition number.

Citations (82)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.