Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Supertagging: Introduction, learning, and application (1412.6264v1)

Published 19 Dec 2014 in cs.CL

Abstract: Supertagging is an approach originally developed by Bangalore and Joshi (1999) to improve the parsing efficiency. In the beginning, the scholars used small training datasets and somewhat na\"ive smoothing techniques to learn the probability distributions of supertags. Since its inception, the applicability of Supertags has been explored for TAG (tree-adjoining grammar) formalism as well as other related yet, different formalisms such as CCG. This article will try to summarize the various chapters, relevant to statistical parsing, from the most recent edited book volume (Bangalore and Joshi, 2010). The chapters were selected so as to blend the learning of supertags, its integration into full-scale parsing, and in semantic parsing.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)