Papers
Topics
Authors
Recent
2000 character limit reached

Solving Totally Unimodular LPs with the Shadow Vertex Algorithm (1412.5381v1)

Published 17 Dec 2014 in cs.DS

Abstract: We show that the shadow vertex simplex algorithm can be used to solve linear programs in strongly polynomial time with respect to the number $n$ of variables, the number $m$ of constraints, and $1/\delta$, where $\delta$ is a parameter that measures the flatness of the vertices of the polyhedron. This extends our recent result that the shadow vertex algorithm finds paths of polynomial length (w.r.t. $n$, $m$, and $1/\delta$) between two given vertices of a polyhedron. Our result also complements a recent result due to Eisenbrand and Vempala who have shown that a certain version of the random edge pivot rule solves linear programs with a running time that is strongly polynomial in the number of variables $n$ and $1/\delta$, but independent of the number $m$ of constraints. Even though the running time of our algorithm depends on $m$, it is significantly faster for the important special case of totally unimodular linear programs, for which $1/\delta\le n$ and which have only $O(n2)$ constraints.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.