Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Max-Product Belief Propagation for Linear Programming: Applications to Combinatorial Optimization (1412.4972v5)

Published 16 Dec 2014 in cs.AI

Abstract: The max-product {belief propagation} (BP) is a popular message-passing heuristic for approximating a maximum-a-posteriori (MAP) assignment in a joint distribution represented by a graphical model (GM). In the past years, it has been shown that BP can solve a few classes of linear programming (LP) formulations to combinatorial optimization problems including maximum weight matching, shortest path and network flow, i.e., BP can be used as a message-passing solver for certain combinatorial optimizations. However, those LPs and corresponding BP analysis are very sensitive to underlying problem setups, and it has been not clear what extent these results can be generalized to. In this paper, we obtain a generic criteria that BP converges to the optimal solution of given LP, and show that it is satisfied in LP formulations associated to many classical combinatorial optimization problems including maximum weight perfect matching, shortest path, traveling salesman, cycle packing, vertex/edge cover and network flow.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)