Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Polynomial-Time Approximation Schemes for Circle and Other Packing Problems (1412.4709v1)

Published 15 Dec 2014 in cs.DS

Abstract: We give an asymptotic approximation scheme (APTAS) for the problem of packing a set of circles into a minimum number of unit square bins. To obtain rational solutions, we use augmented bins of height $1+\gamma$, for some arbitrarily small number $\gamma > 0$. Our algorithm is polynomial on $\log 1/\gamma$, and thus $\gamma$ is part of the problem input. For the special case that $\gamma$ is constant, we give a (one dimensional) resource augmentation scheme, that is, we obtain a packing into bins of unit width and height $1+\gamma$ using no more than the number of bins in an optimal packing. Additionally, we obtain an APTAS for the circle strip packing problem, whose goal is to pack a set of circles into a strip of unit width and minimum height. These are the first approximation and resource augmentation schemes for these problems. Our algorithm is based on novel ideas of iteratively separating small and large items, and may be extended to a wide range of packing problems that satisfy certain conditions. These extensions comprise problems with different kinds of items, such as regular polygons, or with bins of different shapes, such as circles and spheres. As an example, we obtain APTAS's for the problems of packing d-dimensional spheres into hypercubes under the $L_p$-norm.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.