Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Incremental View Maintenance For Collection Programming (1412.4320v2)

Published 14 Dec 2014 in cs.DB

Abstract: In the context of incremental view maintenance (IVM), delta query derivation is an essential technique for speeding up the processing of large, dynamic datasets. The goal is to generate delta queries that, given a small change in the input, can update the materialized view more efficiently than via recomputation. In this work we propose the first solution for the efficient incrementalization of positive nested relational calculus (NRC+) on bags (with integer multiplicities). More precisely, we model the cost of NRC+ operators and classify queries as efficiently incrementalizable if their delta has a strictly lower cost than full re-evaluation. Then, we identify IncNRC+; a large fragment of NRC+ that is efficiently incrementalizable and we provide a semantics-preserving translation that takes any NRC+ query to a collection of IncNRC+ queries. Furthermore, we prove that incremental maintenance for NRC+ is within the complexity class NC0 and we showcase how recursive IVM, a technique that has provided significant speedups over traditional IVM in the case of flat queries [25], can also be applied to IncNRC+.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube