Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Super-Resolution Compressed Sensing: A Generalized Iterative Reweighted L2 Approach (1412.2477v2)

Published 8 Dec 2014 in cs.IT and math.IT

Abstract: Conventional compressed sensing theory assumes signals have sparse representations in a known, finite dictionary. Nevertheless, in many practical applications such as direction-of-arrival (DOA) estimation and line spectral estimation, the sparsifying dictionary is usually characterized by a set of unknown parameters in a continuous domain. To apply the conventional compressed sensing technique to such applications, the continuous parameter space has to be discretized to a finite set of grid points, based on which a "presumed dictionary" is constructed for sparse signal recovery. Discretization, however, inevitably incurs errors since the true parameters do not necessarily lie on the discretized grid. This error, also referred to as grid mismatch, may lead to deteriorated recovery performance or even recovery failure. To address this issue, in this paper, we propose a generalized iterative reweighted L2 method which jointly estimates the sparse signals and the unknown parameters associated with the true dictionary. The proposed algorithm is developed by iteratively decreasing a surrogate function majorizing a given objective function, resulting in a gradual and interweaved iterative process to refine the unknown parameters and the sparse signal. A simple yet effective scheme is developed for adaptively updating the regularization parameter that controls the tradeoff between the sparsity of the solution and the data fitting error. Extension of the proposed algorithm to the multiple measurement vector scenario is also considered. Numerical results show that the proposed algorithm achieves a super-resolution accuracy and presents superiority over other existing methods.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.