Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 126 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Super-Resolution Compressed Sensing: A Generalized Iterative Reweighted L2 Approach (1412.2477v2)

Published 8 Dec 2014 in cs.IT and math.IT

Abstract: Conventional compressed sensing theory assumes signals have sparse representations in a known, finite dictionary. Nevertheless, in many practical applications such as direction-of-arrival (DOA) estimation and line spectral estimation, the sparsifying dictionary is usually characterized by a set of unknown parameters in a continuous domain. To apply the conventional compressed sensing technique to such applications, the continuous parameter space has to be discretized to a finite set of grid points, based on which a "presumed dictionary" is constructed for sparse signal recovery. Discretization, however, inevitably incurs errors since the true parameters do not necessarily lie on the discretized grid. This error, also referred to as grid mismatch, may lead to deteriorated recovery performance or even recovery failure. To address this issue, in this paper, we propose a generalized iterative reweighted L2 method which jointly estimates the sparse signals and the unknown parameters associated with the true dictionary. The proposed algorithm is developed by iteratively decreasing a surrogate function majorizing a given objective function, resulting in a gradual and interweaved iterative process to refine the unknown parameters and the sparse signal. A simple yet effective scheme is developed for adaptively updating the regularization parameter that controls the tradeoff between the sparsity of the solution and the data fitting error. Extension of the proposed algorithm to the multiple measurement vector scenario is also considered. Numerical results show that the proposed algorithm achieves a super-resolution accuracy and presents superiority over other existing methods.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.