Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

$\ell_p$ Testing and Learning of Discrete Distributions (1412.2314v4)

Published 7 Dec 2014 in cs.DS, cs.LG, math.ST, and stat.TH

Abstract: The classic problems of testing uniformity of and learning a discrete distribution, given access to independent samples from it, are examined under general $\ell_p$ metrics. The intuitions and results often contrast with the classic $\ell_1$ case. For $p > 1$, we can learn and test with a number of samples that is independent of the support size of the distribution: With an $\ell_p$ tolerance $\epsilon$, $O(\max{ \sqrt{1/\epsilonq}, 1/\epsilon2 })$ samples suffice for testing uniformity and $O(\max{ 1/\epsilonq, 1/\epsilon2})$ samples suffice for learning, where $q=p/(p-1)$ is the conjugate of $p$. As this parallels the intuition that $O(\sqrt{n})$ and $O(n)$ samples suffice for the $\ell_1$ case, it seems that $1/\epsilonq$ acts as an upper bound on the "apparent" support size. For some $\ell_p$ metrics, uniformity testing becomes easier over larger supports: a 6-sided die requires fewer trials to test for fairness than a 2-sided coin, and a card-shuffler requires fewer trials than the die. In fact, this inverse dependence on support size holds if and only if $p > \frac{4}{3}$. The uniformity testing algorithm simply thresholds the number of "collisions" or "coincidences" and has an optimal sample complexity up to constant factors for all $1 \leq p \leq 2$. Another algorithm gives order-optimal sample complexity for $\ell_{\infty}$ uniformity testing. Meanwhile, the most natural learning algorithm is shown to have order-optimal sample complexity for all $\ell_p$ metrics. The author thanks Cl\'{e}ment Canonne for discussions and contributions to this work.

Citations (30)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.