Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

$\ell_p$ Testing and Learning of Discrete Distributions (1412.2314v4)

Published 7 Dec 2014 in cs.DS, cs.LG, math.ST, and stat.TH

Abstract: The classic problems of testing uniformity of and learning a discrete distribution, given access to independent samples from it, are examined under general $\ell_p$ metrics. The intuitions and results often contrast with the classic $\ell_1$ case. For $p > 1$, we can learn and test with a number of samples that is independent of the support size of the distribution: With an $\ell_p$ tolerance $\epsilon$, $O(\max{ \sqrt{1/\epsilonq}, 1/\epsilon2 })$ samples suffice for testing uniformity and $O(\max{ 1/\epsilonq, 1/\epsilon2})$ samples suffice for learning, where $q=p/(p-1)$ is the conjugate of $p$. As this parallels the intuition that $O(\sqrt{n})$ and $O(n)$ samples suffice for the $\ell_1$ case, it seems that $1/\epsilonq$ acts as an upper bound on the "apparent" support size. For some $\ell_p$ metrics, uniformity testing becomes easier over larger supports: a 6-sided die requires fewer trials to test for fairness than a 2-sided coin, and a card-shuffler requires fewer trials than the die. In fact, this inverse dependence on support size holds if and only if $p > \frac{4}{3}$. The uniformity testing algorithm simply thresholds the number of "collisions" or "coincidences" and has an optimal sample complexity up to constant factors for all $1 \leq p \leq 2$. Another algorithm gives order-optimal sample complexity for $\ell_{\infty}$ uniformity testing. Meanwhile, the most natural learning algorithm is shown to have order-optimal sample complexity for all $\ell_p$ metrics. The author thanks Cl\'{e}ment Canonne for discussions and contributions to this work.

Citations (30)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube