Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

How Many Communities Are There? (1412.1684v2)

Published 4 Dec 2014 in stat.ME, stat.AP, stat.CO, and stat.ML

Abstract: Stochastic blockmodels and variants thereof are among the most widely used approaches to community detection for social networks and relational data. A stochastic blockmodel partitions the nodes of a network into disjoint sets, called communities. The approach is inherently related to clustering with mixture models; and raises a similar model selection problem for the number of communities. The Bayesian information criterion (BIC) is a popular solution, however, for stochastic blockmodels, the conditional independence assumption given the communities of the endpoints among different edges is usually violated in practice. In this regard, we propose composite likelihood BIC (CL-BIC) to select the number of communities, and we show it is robust against possible misspecifications in the underlying stochastic blockmodel assumptions. We derive the requisite methodology and illustrate the approach using both simulated and real data. Supplementary materials containing the relevant computer code are available online.

Citations (107)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.