Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Randomized embeddings with slack, and high-dimensional Approximate Nearest Neighbor (1412.1683v2)

Published 4 Dec 2014 in cs.CG

Abstract: The approximate nearest neighbor problem ($\epsilon$-ANN) in high dimensional Euclidean space has been mainly addressed by Locality Sensitive Hashing (LSH), which has polynomial dependence in the dimension, sublinear query time, but subquadratic space requirement. In this paper, we introduce a new definition of "low-quality" embeddings for metric spaces. It requires that, for some query point $q$, there exists an approximate nearest neighbor among the pre-images of the $k>1$ approximate nearest neighbors in the target space. Focusing on Euclidean spaces, we employ random projections in order to reduce the original problem to one in a space of dimension inversely proportional to $k$. The $k$ approximate nearest neighbors can be efficiently retrieved by a data structure such as BBD-trees. The same approach is applied to the problem of computing an approximate near neighbor, where we obtain a data structure requiring linear space, and query time in $O(d n{\rho})$, for $\rho\approx 1-\epsilon2/\log(1/\epsilon)$. This directly implies a solution for $\epsilon$-ANN, while achieving a better exponent in the query time than the method based on BBD-trees. Better bounds are obtained in the case of doubling subsets of $\ell_2$, by combining our method with $r$-nets. We implement our method in C++, and present experimental results in dimension up to $500$ and $106$ points, which show that performance is better than predicted by the analysis. In addition, we compare our ANN approach to E2LSH, which implements LSH, and we show that the theoretical advantages of each method are reflected on their actual performance.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.