Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Fast Rates by Transferring from Auxiliary Hypotheses (1412.1619v3)

Published 4 Dec 2014 in cs.LG

Abstract: In this work we consider the learning setting where, in addition to the training set, the learner receives a collection of auxiliary hypotheses originating from other tasks. We focus on a broad class of ERM-based linear algorithms that can be instantiated with any non-negative smooth loss function and any strongly convex regularizer. We establish generalization and excess risk bounds, showing that, if the algorithm is fed with a good combination of source hypotheses, generalization happens at the fast rate $\mathcal{O}(1/m)$ instead of the usual $\mathcal{O}(1/\sqrt{m})$. On the other hand, if the source hypotheses combination is a misfit for the target task, we recover the usual learning rate. As a byproduct of our study, we also prove a new bound on the Rademacher complexity of the smooth loss class under weaker assumptions compared to previous works.

Citations (61)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.