Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 153 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 169 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Efficient algorithms to decide tightness (1412.1547v1)

Published 4 Dec 2014 in cs.CG and math.CO

Abstract: Tightness is a generalisation of the notion of convexity: a space is tight if and only if it is "as convex as possible", given its topological constraints. For a simplicial complex, deciding tightness has a straightforward exponential time algorithm, but efficient methods to decide tightness are only known in the trivial setting of triangulated surfaces. In this article, we present a new polynomial time procedure to decide tightness for triangulations of $3$-manifolds -- a problem which previously was thought to be hard. Furthermore, we describe an algorithm to decide general tightness in the case of $4$-dimensional combinatorial manifolds which is fixed parameter tractable in the treewidth of the $1$-skeletons of their vertex links, and we present an algorithm to decide $\mathbb{F}_2$-tightness for weak pseudomanifolds $M$ of arbitrary but fixed dimension which is fixed parameter tractable in the treewidth of the dual graph of $M$.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.